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After a review of the results obtained in the quantum square well problem in the last six decades, Garrett's approach is 
reformulated in a consistent way, and Barker's solution is deduced using a simple method. A new analytic approximation for 
the roots of the transcendental equations for the energy eigenvalues is proposed, with applications to the study of quantum 
wells and resonant cavities. 
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1. Introduction 
 

One of the most elementary problems of quantum 

mechanics treats the movement of a particle of mass m in a 

square well potential: 
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The eigenvalue equations for the energy of states 

(which have well defined parity - a consequence of the 

symmetry of the potential, see for instance [1]) inside the 

well are equivalent to: 
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The roots correspond to the intersections of the 

functions 
x

x

x

x cos
,

sin
 with the line py  ; here, x is 

just the Cartesian coordinate of a point in a plane (xOy) 

and has nothing to do with the spatial variable x in (1). 

The number of roots depends on the value of p. To solve 

these equations means to find explicit expressions for 

)(),( pp  - a highly non-trivial mathematical problem. 

The quantity p  is the inverse of the potential strength P: 
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The alternance of signs, in (2), is connected to the 

parity of states and has, in fact, the following aspect: 
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and so on.  

In other words, the eigenvalues of the even states are 

given, for 
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(modulo 2 ) (see Fig. 1). The eigenvalues of the odd 

states, for 
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 etc. (see Fig. 2).  The fact, that 

the same quantity is written as )(1 p or )(1 p  in (2) 

and x in (4-7), should not produce any confusion. Later on, 

when we shall be interested only in the mathematical 
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aspects of inverting the functions (2), we shall write 

)(1 x  instead of )(1 p , considering that x is a generic 

variable, independent of the physical meaning of  
P

p
1

 , 

according to (3), and, evidently, having nothing to do with 

the coordinate x  in (1). 

 

 

 

Fig. 1. The roots of the equation y
x

x


cos
. 

 

 
 

Fig. 2 The roots of the equation y
x

x


sin
. 

 

 

Until the mid '80s, the square well problem was of 

limited physical interest; its applications used to cover the 

oversimplified approach of some physical systems or 

phenomena, like electrons on a linear molecule, electrons 

just below the free surface of a metal, the Ramsauer-

Townsed effect, the deuteron or alpha-particle emission 

from heavy nuclei ([2], [3]). But after the fabrication of 

quantum wires [4], the theoretical and experimental study 

of photon cavity systems [5], [6], [7], the experimental 

observation of revivals and super-revivals ([8], [9]) or the 

progress of the so-called "ghost orbit spectroscopy" [10], 

the square wells describe realistic physical systems or 

phenomena, and the need for an explicit solution exceeds 

the level of solving a simple problem of quantum 

mechanics. Another important application belongs to the 

domain of resonant cavities, where the frequency of 

normal modes are given by the same equations (2), see 

[11], [12]. 

In the last decade, refinement of experimental 

techniques made possible the realization of ultra-thin 

metallic films. Actually, as the size of a physical system is 

reduced to the nanometer range, electron confinement is 

expected to generate quantum well states; these states are 

very well described by the quantum mechanical ‘particle 

in a box’ model. In fact, the electron moving normal to the 

film surface can be considered a particle in a rectangular 

box. The case of a symmetric barrier describes only the 

electron states in a freestanding metallic thin film. 

However, in the realistic situation of a thin film grown on 

a substrate, the presence of this substrate produces an 

asymmetric potential barrier. However, such a potential 

has only the effect of “phase shifting” the physical 

properties of the freestanding film [13]. The rich physics 

of thin metallic films, as noticed by the pioneering papers 

[14] and [15], shows up an oscillatory behavior of the film 

stability [16], of lattice distortion [17] or work function, 

depending on the number of monolayers. So, by growing 

the thin films with atomic layer precision, it is possible to 

tune their work function, thus influencing the chemistry of 

the surface [18]. 

With few exceptions [19], [20], the physical 

properties of metallic ultra-thin films are obtained 

theoretically considering that the square well containing 

the electron can be approximated with an infinite one. This 

is of course a crude approximation, applicable only for 

films with a quite large numbers of monolayers ( 10n ), 

but inacceptable for 1~n . In this last situation, it is 

necessary to use the solutions of the ‘particle in a finite 

box’ problem. 

The main contribution of this paper is to propose 

solutions of the eigenvalue equations for the energy of a 

particle in a finite rectangular box, (2). A special attention 

will be paid to low order roots n , n , 1~n . Another 

contribution is the consistent use of Garrett’s [21] iteration 

process, in order to associate, to a given square well, an 

infinite one, having approximately the same first n energy 

levels. Also, the results of Barker et al. [22] are re-

obtained in a simple manner. 

Some few words about conventions and notations are 

appropriate. Our choice, eq. (1), corresponds to a well 

having the top at 0E , on the energy axis, so all the 

levels nE  are negative. Other popular choice is to have 

the bottom of the well at 0E so all the levels nE  are 

positive. It is adopted, of course, for infinite wells (the 

particle moving between rigid walls). Our paper contains a 

review of the previous work, where all these conventions 

have been used by various authors; in order to keep the 

notation simple, and to facilitate the direct access of the 

reader to references, we preferred to use the same symbol 

nE , in all cases. We hope that this fact will not confuse 

the reader. 
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The structure of this paper is as follows. Section 2 is 

devoted to a detailed analysis of the previous work. It 

contains a critical discussion of the results already 

obtained, as well as, sometimes, suggestions concerning 

their possible improvements. In Section 3, we show how 

the levels of a finite square well can be obtained from 

those of an infinite one, using consistently the concept of 

characteristic depth, introduced by Garrett. In Section 4, 

we use a simple method to re-obtain the main results of 

Barker et al. [22]. Section 5 contains our main 

contribution, the parabolic approximation of the solution 

of equations (2). It is compared with other approximations 

proposed in literature, and with the exact solutions. 

Section 6 is devoted to conclusions. 

 

 

2. Critical analysis of the previous work 
 

In most textbooks, the energy eigenvalues of the problem 

(1) are obtained from the equation 

k
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In the early books of quantum mechanics ([23], [24]), 

these equations are solved graphically (if we refer 

specifically to these two textbooks - by two different 

methods). The first paper devoted to this problem is due, 

to the best of our knowledge, to P. H. Pitkanen [25], who 

writes (8, 9) in a simpler form, (2), allowing a simple 

visualization of solutions; a detailed discussion of the 

appropriate sign in (2) is also given. The second paper [26] 

(which does not cite [25], producing a delay in its citation 

by other authors) proposes again the replacement of eqs. 

(8,9) with (2) - which is in fact a repetition of Pitkanen's 

contribution -, notices that the equation for odd states is 

also the equation for the eigenvalues of a particle in a 

semi-infinite square well, i.e. with the potential: 
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and introduces, for the bound states of this potential, the 

value of Nonset , defining the threshold value of the 

potential strength, allowing the occurrence of a new bound 

state. A first order approximation for the ground state of 

(9), in the limit of a deep well, is obtained, using the linear 

approximation of sinx.  

An interesting graphical solution is proposed by 

Elmore [27] using polar coordinates, as intersections of the 

spiral of Archimedes r with four circles of diameter 

0

0

2
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a
 , with 

2/1

0

0
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h
 the de Broglie 

wavelength of a hypothetical zero-energy particle in the 

well. Another graphical construction, due to Guest [28], 

studying the intersection of the line Uay 2 with the 

branches of the curve 
x

x
y

sin
 , has the virtue of 

putting in value the striking resemblance of the bound 

states energies in a finite rectangular well with the modes 

of a metallic waveguide ([11], fig. (8.14)); in fact, the 

Sturm-Liouville problems are identical, for the 

eigenvalues of the frequencies in a waveguide and of the 

energy of a quantum particle in a rectangular well [12].  

Murphy and Phillips [29] prefer to put the eigenvalue 

equation in the form:  



y
y arccos ; 

 


2/122mUa
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and to solve it numerically, while Memory [30] applies the 

Newton-Raphson method to get the solution. 

A completely different approach is proposed by 

Siewert [31]. Following a method of solving the Riemann 

problem developed previously [32], the author gives an 

explicit way of obtaining exact solutions for eqs. (3) and 

(4). Unfortunately, this approach needs the evaluation of 

some complicated integrals (task not yet accomplished by 

any author), so Siewert's solution is of limited use. Garrett 

[21] introduces an interesting concept in connection with 

the finite rectangular well: the characteristic depth : 

2/1))(2( EUm 



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defining the dimension of the region outside the well, 

where the wave function of a bound state can penetrate, 

decreasing exponentially. This concept is similar to the 

"skin depth" in electromagnetism [11] or to "viscous 

penetration depth" in fluids [33]. Garrett's suggestion is to 

introduce the value of the energy for the n-th bound state 

of the particle in the infinite well: 

2
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nEn


 , ,...2,1n                (14) 

in eq. (13), and to use the value n obtained in this way in 

order to define an effective width nn aa 2
'

 of 

another infinite well, with energies 
)1(

nE and to repeat the 

iteration. Finally, each energy level nE  of the finite well 

can be approximated to the n-th level of an infinite well of 

effective width 
'2 na  , with 

'

n obtained in the second 

iteration, as just explained. Even if such an idea might be 

appealing, it is unclear how many iterations would 

produce a satisfactory solution. The consistent application 
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of Garrett's idea, using an infinite number of iterations, is 

exposed in the Section 3 of the present paper.  

Reed [34] introduces another simplification of the 

problem, replacing the two equations (2) with a unique 

one: 

0)2cos(2)2sin()2( 2222   KK , 
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although it is not necessarily evident the advantage of 

renouncing at two simpler, almost identical equations, for 

a more complicated one. Barker et al. [22] obtain the 

second term in the formula of an energy level of a deep 

well, in the form: 
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using essentially the cubic approximation for sinx. The 

authors stress the fact that the energy levels of a finite 

square well of width a and well strength P can be 

approximated as the first n levels of an infinite well of 

width 
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Sprung et al. [35] put Reed's equation in the form (eq. (11) 

of his paper): 
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and solve it using an iteration method, suited to deep 

wells. The discussion of the solution is interesting, but the 

solution is quite cumbersome and difficult to use.  

Aronstein and Stroud [36] solve Reed's equation, put in 

the form:  

2
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obtaining a series expansion for the energy E eq. (17) of 

their paper), in powers of 
P

r
r

n
 )arcsin(

2


 , 

where 
P

r


  is the so-called height ratio (giving the 

position of the level in the well), with coefficients 

depending on r, consequently of   consequently on E. 

This E-dependence of the r.h.s. term is suppressed by 

giving to r numerical values, e.g. 0r  for the well 

bottom. So, the authors are able to obtain accurate 

expressions for certain regions of the well, for instance 

0r  or 
2

1
r . Also, they give a remarkable physical 

interpretation of the quantization condition of the particle 

in the well. It is also interesting the valorization of their 

results in the study of revivals and super-revivals.  

Paul and Nkemzi [37] use a variant of Burniston-Sewart 

method [32], [31] in order to express the solutions of the 

eigenenergy equations (3), (4). The result is given as an 

integral (eq. (26) of their paper), so its practical utility is 

limited from the very beginning; it is unclear if one can 

obtain from it a series expansion in the potential strength 

(denoted here by p). Even the large p limit gives an 

incorrect result. Aronstein and Stroud [38] complete the 

bibliographic omissions of Paul and Nkemzi [37] and 

notice an incorrect coefficient in their low-order expansion 

of the energy. Pickett and Millev [39] also develop an 

extension of the Siewert-Burniston approach [32], [31], 

again without any easy-to-use final formula. Blumel [40] 

obtains an original exact solution which, even integral-

free, contains complicated series of functions.  

Last but not the least, de Alcantara Bonfim and 

Griffith [41] solve the transcendental equations for the 

finite well and also for other simple potentials using 

unexpected (and excellent!) approximations, for instance:  
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For 0s , or 
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
. Even if the 

ground state energy is obtained with high precision, for the 

other levels the situation is different, i.e. there is no series 

expansion for each level, with a given precision.  

With the amazing development of the mathematical 

software, the exploration of simple quantum mechanical 

problems, like various rectangular square wells, becomes 

more and more accessible. An example is the excellent 

book of Van Wyk [42], where (inter alia) the semi-infinite 

square well ("the deuteron problem") and the finite square 

well are both discussed, however without mentioning that 

the first one is a particular case of the second.  

 

 

3. Garrett's concept of "characteristic depth" 
 

Garrett [21] was the first to approach the square well 

problem starting from a simple physical idea, in the 

attempt of obtaining the expressions of the energy levels. 

Considering that the main difference between the infinite 
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square well and the finite one is the fact that, in the second 

case, the particle can penetrate the potential well, Garrett 

tries to associate, for a finite well, an infinite one, of 

somewhat larger length, having the same first n energy 

levels, as the finite well. Garrett proposes an iterative 

approach for obtaining the value of this "somewhat larger 

length".  

Actually, Garrett's approach is as follows. A particle 

in an infinite well has the energy levels given by (14). The 

same particle, moving in a square well of finite depth U 

can penetrate the wells of this potential, on a distance of 

the order: 
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to produce, similar to (22), a second correction to (14). A 

consequent application of this idea should involve infinity 

of steps, the general one being: 
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Putting: 
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we get the following equation for the characteristic depth, 

obtained after an infinite number of iterations: 
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where P is defined in (3). 

As y<<1, we shall solve this equation in increasing orders 

of y. In the first order, the equation gives y=-1/2, so 

2

a
 , an unacceptable result, as   should be 

positive. The conclusion is that the first acceptable 

approximation starts at least at the second order:  
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and a corrected value for the energy of the particle in a 

finite well: 
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With   given by (17), we get: 
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The term 1/P in the denominator gives a spurious 

precision, so it can be disregarded; the final result is: 
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We obtain the first term of Barker's formula (16), which 

means that the energy levels of a particle in a square well 

of length a and strength P can be approximated with the 

levels of an identical particle, in an infinite well of length 

a
P










1
1 . This is one of the main conclusions of 

Barker's paper. As we have shown here, it can be obtained 

directly from Garrett's approach, applied in a consistent 

manner. 

Let us mention that the result is valid if (see for instance 

(24)): 
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with 
 0

nE  - the n-th level of the infinite well, according to 

(14). 

 

 

4. Barker's solution of the transcendental  
    equations 
 

Barker et al. [22] find an approximate solution of the 

transcendental equations (2) using a series expansion of 

the trigonometric functions. As their method is quite 
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complicated, we shall re-obtain their main result in a 

simpler way.  

We shall use the notations explained just after eq. (7). 

Let us first consider the equation: 

 

1212sin   nn x                          (32) 

Putting 

    1212 nn                     (33) 

 

we get, expanding the sin up to the third order: 
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It is convenient to use, for the cubic equation, the form 

given (for instance) in [43]: 

 

03  tzz                           (35) 

 

Its solution which approaches 0 when 0t is: 

 

...3  ttz                       (36) 

 

After simple calculations one obtains: 
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and: 
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In exactly the same way, we get, for the solution of the 

equation: 

nn x 22sin                             (39) 

 

the root: 
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Similarly, for the equation 

 

nn x 22cos                             (41) 

we get: 
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For the odd index roots: 
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The difference between eqs. (38,40,42,43) and 

Barker's result (16,17) is due to the fact that Barker do not 

solve the eqs. (2) in their general form, similar to (32), i.e.  
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                   (44) 

 

with 0y , but in the variant used in the eigenvalue 

problem, (4-7). 

As Barker’s formulas are obtained from a 3
rd

 order 

expansion in the small parameter, any higher order term 

gives a spurious precision. In fact the more appropriate 

form of (38)-(43) is the polynomial one. For instance, 

Barker’s general formula should be written as: 
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With 

 

)1(~)( Opfn  for 1p . 

 

 

5. The parabolic approximation 
 

To solve the eigenvalue equation (2), or its more 

general form (44), with 0y or 0y , means to invert 

the function )(xy  defined by (44), i.e. to obtain the 

function )(yx . Geometrically, the inverse of the function 

)(xy , represented as a curve with a generic point ),( yx , 

is represented by its symmetric with respect to the first 

bisector. A generic point of the inverse function has the 

coordinates ),( xy . 

Of course, only monotonous functions can be 

inverted, so, “inverting the function xx /sin ” (for 

instance), means, in fact, to consider the restriction of this 
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function on intervals defined by its neighbor extremum 

points, which are indeed monotonous functions, and to 

invert each of these functions. Our approach contains two 

approximations. Firstly we shall approximate the 

extremum points of the functions xx /sin  (respectively 

xx /cos ) with  2/12 n  (respectively with n ). 

Rigorously speaking, the extremum points are located at 

the roots of the equation xx tan  (respectively 

xx /1tan  ) and are slightly shifted to the left of the 

aforementioned values. 

Secondly we shall replace the negative or positive 

parts of the xx /sin  (respectively xx /cos ), restricted 

on their intervals of monotony, with segments of 

parabolas. 

Recently, a similar approach for obtaining 

approximate solutions of the transcendental eq. (2) has 

been proposed, but using a cubic polynomial, instead of a 

quadratic one, and using exact extremum points [44]. The 

solutions are expressed in terms of arcsin functions, and 

are quite difficult to use in applications. This is why we 

propose here a simpler approximation. The loss in 

precision, due to this less accurate approximation, will be 

discussed. 

Using the method just exposed, we find the parabolic 

approximation for the first root for the odd states equation, 

the following expression: 

 

xx  1)()1(

1                           (46) 

 

A better formula, at least for 1x , is obtained from an 

approximation of the sin function: 

 

   2)2(

1 18.116)( xxx  , 11  p    (47) 

 

Let us compare these solutions with the cubic 

approximation [44]: 
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with Barker’s result: 
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and with the exact formula, cut after the first four terms is: 
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In Fig. 3, the exact solution 1  is obtained 

graphically, as a reflection with respect to the first 

bisector, together with the approximate solutions given by 

eqn. (46) – (50). The accuracy of the cubic approximation 

is remarkable. 
)2(

1  is very good too, for “large” 

arguments 16.0  x , and better than the parabolic one, 

excepting small values of x  2.0x . The series 

expansion near 0x of the exact solution diverges for 

moderate values of x, but for 2.0x , even the series cut 

after four order terms, gives an excellent approximation. 

For practical purposes, it seems that Barker’s solution is 

equally good. 

 
 

 
 

Fig. 3. The first root the equation y
x

x


sin
: the exact 

solution and various approximations, eqn. (46) – (50). 

 

 

 

Similar exercises show that, for larger n, the accuracy 

of the parabolic approximation increases (see Fig. 4), as 

well as the convergence of the exact solution, both for n  

and n . The higher order solutions n , 1n , has a 

form analogous to (46): 

 

xcba nnnn 
                   

 (51) 

 

Where the numerical coefficients can be easily obtained, 

following the recipe given at the beginning of this section. 
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Fig. 4. The first 8 roots of the equation y
x

x


sin
. The 

continuous line corresponds to the exact solution, and the  

          dotted line to the parabolic approximation. 

 

 

The situation of the first solution of the even equation 

in (2), 1 , is atypical, in the sense that it cannot be 

approximated by a polynomial. However the quadratic 

approximation of cos gives: 
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Barker’s formula is: 
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and the exact solution (series expansion near the origin), 

cut after the 5
th

 order term, has the form: 
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The plot (Fig. 5) shows that, for 5.1x , )()1(

1 x  is 

a good approximation, as )()2(

1 x  and )()3(

1 x  are, for 

3.0x ; the exact solution is of little use (near 0x ), 

and it diverges more rapidly than Barker’s approximation. 

However, for 5.15.0  x , all the functions mentioned 

here are inappropriate; the only approach is to write a 

series expansion of the exact solution, similar to )()3(

1 x , 

not in the neighborhood of 0x , but of the value 

 5.1,5.00 x , in which we are interested. 

 

 
 

Fig. 5. The first root of the equation y
x

x


cos
: the exact 

solution and various approximations. 

 

 

For  1n  , the solutions n  have a form similar to 

(51), but with different values for the numerical constants. 

The solution 1  is however of special interest, as it 

gives the ground state energy for a symmetric square well. 

It is well known that an arbitrarily shallow well can “keep” 

a bound state, and its energy is crucial for the correct 

determination of the quantum well states in a metallic 

ultra-thin film [45].  

Also, for a semi-infinite square well, 1  gives the 

ground state energy, so the previous considerations are 

valid for films described by such a potential [13]. Our 

“parabolic approximation” has a reasonable accuracy for  

1 , and a much better one, for n , with 1n . So, they 

can be used to describe the physics of a large class of 

ultra-thin films. 

Other applications of our results are the evaluation of 

the resonant modes of resonant cavities [11], [12]. 

 

 

6. Conclusions 
 

The present paper is devoted to the presentation of a 

new approximate analytical solution for an elementary 

problem of quantum mechanics – the square well. In spite 

of its elementary character, its energy eigenvalue equation 

is equivalent to two very interesting transcendental 

equations; the explicit determination of their solution is a 

very challenging mathematical problem. In the absence of 

an easy-to-use exact solution, a simple analytical 

approximation for the energy eigenvalue equations is of 

real practical interest. In this paper, such an approximate 

solution is proposed. It is interesting not only for the 

investigation of physical systems and phenomena of 
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modern nanophysics and nanophotonics, like quantum 

wells and interaction of femptosecond laser pulses with 

solids (revivals and super-revivals), but also for the 

analytic description of normal modes in resonant cavities. 

The applications in the physics of metallic ultra-thin films 

are also discussed. 

Even if numerical results were available for such 

problems, the analytical approximations are important, as 

they make clear the physical aspects of the phenomena 

under investigation. Recently, similar approaches have 

been successfully applied in other fields of nanophysics 

[46], [47]. 
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